Cofra Carver Cut Resistant Glove Gray/Gray
Product description
Product Features:
- High lightness and breathability
- Fiber without fiberglass
- Made from innovative NEXTOFIL yarn
- Maximum mechanical performance according to EN 388 standard
- Maximum dexterity and cut resistance
Materials:
- Palm: Polyurethane
- Lining: Fabric made of polyethylene HDPE, NEXTOFIL, polyester, nylon, elastane
Areas of Application:
- Construction industry
- Glass industry
- Machinery industry
- Handling of metal sheets
- Working with cutting parts
Technical Details:
- NEXTOFIL: Fiberglass-free, ensures good flexibility and high mechanical performance
- HDPE (high-density polyethylene): Extremely cut-resistant yarn, thin and flexible material for high wearing comfort and good mobility
Suited for diverse tasks, offering reliable cut protection without sacrificing dexterity. Balances safety and flexibility for various applications.
Offers complete hand coverage, including full finger protection from cuts and abrasions. A versatile style suitable for various tasks and environments.
Indicates the glove's visual appearance, which may signify specific applications, enable color-coding systems, or enhance visibility in work environments.
Indicates the knit density of the glove, affecting dexterity and protection level. Higher numbers offer better finger sensitivity for precision tasks.
Defines how the glove secures at the wrist, affecting comfort, debris protection, and ease of donning/removal. Options vary in security and coverage.
- Cut Resistant
- Heat & Flame Resistance
- Slip Resistant
- Hand Protection
Request a free sample
Test first and buy later. Visit any product page to request your free sample.
Standards and labels
EN 388:2016 is a European standard for measuring the performance of protective gloves against mechanical risks (abrasion, cut, tear, and puncture). The standard includes test methods and performance requirements for gloves to be considered compliant. Test results are reported using a series of four numbers, each representing the performance level achieved in one of the tests.
Test results
Abrasion Resistance Level 4EN 388:2016 uses a specific test method to measure abrasion resistance of safety gloves; the gloves’ material is subjected to sandpaper under pressure to observe the number of cycles needed to wear through the material. Level 4 in this standard indicates that the material withstood 8,000 cycles before a hole was made. Practically, this means that gloves rated at Level 4 for abrasion resistance offer very high resilience against wearing through, making them suitable for tasks involving significant contact with rough surfaces .
Puncture Resistance Level 4The standard EN 388:2016 includes a test for Puncture Resistance, where a Level 4 result indicates a protective performance that can withstand a force between 100 to 150 newtons. This specific level of puncture resistance reflects a significant protective capability, offering substantial protection against punctures from pointed objects like nails or wires. The test method includes using a standard stylus of a specific diameter, which is pressed against the sample material with increasing force until it punctures the material. A machine used for this test measures the force exerted at the moment the material is punctured. Practical implications of this result for products such as gloves or protective clothing mean that they are suitable for environments where there is a high risk of encountering medium to sharp objects that could pierce through lesser resistant materials, thus ensuring higher safety standards for workers in such conditions. This level of puncture resistance is particularly crucial in industries such as construction or waste management where sharp debris is common.
Tear Resistance Level 4EN 388:2016 is a European standard that establishes criteria for assessing the protection provided by gloves against mechanical hazards, including tear resistance. The Tear Resistance Level 4 classification represents the highest level of tear resistance defined by this standard, indicating that the gloves can withstand the most substantial forces before tearing. According to the testing methodology, gloves are evaluated by measuring the force required to tear a sample of the glove material, with Level 4 requiring a force of over 75 Newtons to initiate and propagate a tear. This high level of tear resistance is ideal for use in environments where gloves are subjected to significant stress and potential damage, such as in heavy industry, construction, and handling of materials with sharp edges. Gloves achieving this level offer superior durability and are essential for ensuring user safety in high-risk mechanical settings, thereby enhancing work efficiency and reducing the frequency of glove replacement.
Cut Resistance, ISO 13997 Level DCut Resistance according to the ISO 13997 result under the European Standard EN 388:2016 quantifies the level of resistance a material offers against cutting where the required force to cut through the protective material is between 15 and 21 Newtons. This test method involves applying a straight-edge blade under load over the material's surface and determining the load at which the blade cuts through at a standard length of cut. This stringent testing is critical for products like protective gloves or garments, where high cut resistance ensures better safety and durability in environments where sharp objects are handled. Understanding and adhering to this standard helps procure suitable protective gear that meets safety requirements and offers expected protection for specific risk exposures .
Test results
General Requirements GuideEN ISO 21420:2020 is a standard that outlines general requirements and guidelines for protective gloves, aiming to ensure their quality, performance, and suitability for various applications. When a product meets the requirements outlined in the General Requirements section of EN ISO 21420:2020, it signifies that the gloves comply with fundamental quality and performance criteria, including factors such as size, fit, ergonomics, and dexterity. The practical implications of this compliance are significant, as it assures users of the gloves' basic functionality and suitability for general hand protection purposes across a range of industries and applications. The test method involves evaluating various aspects of the gloves, including dimensions, construction, materials, and labeling, to ensure conformity with the specified requirements. Compliance with these general requirements enhances user confidence in the protective gloves' reliability and effectiveness, promoting workplace safety and facilitating compliance with regulatory standards.
EN 420:2003+A1:2009 is a European standard that sets out the general requirements for hand protection, including comfort, fit, and dexterity. Performance requirements include resistance to abrasion, cut, tear, puncture, and impact. Test results should show the gloves meet these requirements.
EN ISO 6330:2021 is a standard that sets guidelines for testing the resistance of plastic materials to abrasion. It defines abrasion as the wear caused by rubbing or friction on the surface of the plastic. It also sets performance requirements for how much abrasion a plastic should be able to withstand before showing signs of damage. This particular version of the standard, 2021, may have updates in the test methods and/or performance requirements from the previous versions. The test results will include the level of abrasion on the plastic and whether it meets the performance requirements set by the standard, including any updates made in the 2021 version.
EN 407:2020 is a European standard that specifies the safety requirements for protective gloves for thermal risks. It sets rules for the design, construction, and testing of gloves that protect users from heat and fire. Testing includes measurements of contact heat, convective heat, radiant heat, small splashes of molten metal, and flame resistance. The standard also includes requirements for labeling and instructions for use. This standard is an updated version of EN 407:2004, it includes new requirements, testing methods and performance levels to ensure that the gloves provide better protection against thermal risks such as heat, fire and molten metal splash.
Test results
Metal Splash Resistance Level XThe EN 407:2020 standard specifies different levels of protection for gloves against thermal risks, including metal splash resistance. A result marked as 'Level X' under this standard symbolizes that the glove material either did not meet the minimum requirements for testing or that no specific test was conducted for this hazard. The test for Metal Splash Resistance in EN 407:2004 involves exposing the glove material to molten metal splashes to determine how much molten metal is required to heat the glove material to a degree that it would cause risks to the wearer. The practical implication of a 'Level X' rating is that gloves marked as such should not be relied upon for protection against risks of molten metal splashes, making them unsuitable for use in environments where exposure to this hazard is likely.
Molten Metal Resistance Level XEN 407:2020 is a European standard that provides specifications for protective gloves to safeguard against thermal risks, including the exposure to molten metals. The designation Molten Metal Resistance Level X indicates that the gloves have not been tested for this specific risk, or they failed to meet the minimum requirements set out in the standard for protection against molten metal splashes. This means that the gloves are either unsuitable for use in environments where there is a risk of contact with molten metals, or additional testing is required to determine their suitability. Typically, such a classification implies that the gloves should not be used for handling molten metals and should only be considered for other types of thermal risks specified in the standard, where molten metal exposure is not a concern. This classification helps in ensuring that users select the right type of glove based on the specific hazards present in their working environment, thereby preventing inappropriate use and enhancing safety.
Burning Behaviour Level XThe EN 407:2020 standard's specified test result Level X for Burning Behaviour indicates that either the test was not conducted or the sample was not applicable for testing under this specific parameter. Consequently, no performance level can be assigned according the criteria set in the standard. This finding is part of a broader testing protocol where Thermal Hazards Protection levels are determined for materials, especially used in gloves intended for heat handling. The test method evaluates the material’s ability to resist catching fire and its rate of burning. To assess burning behavior, the sample is exposed to a small flame, and observations are made on whether it ignites, how long it burns after the flame is removed, and how it extinguishes. Practical implications for products that receive a Level X for Burning Behaviour could include uncertainty in performance when faced with thermal hazards, thus impacting their suitability for jobs involving high temperatures or direct contact with flames.
Heat Contact Level 1EN 407:2020 sets the standard for evaluating the performance of protective gloves against thermal risks. A result of Level 1 for Heat Contact indicates minimal protection, where the glove material can delay the transfer of heat from a surface at 100°C for at least 15 seconds. This test result is established through method EN ISO 12127-1, where a glove sample is exposed to a hot surface at a specified temperature and the time is measured until the glove's interior temperature rises by a certain degree. For procurement professionals, a Level 1 rating suggests suitability for environments with low heat risks, providing brief contact protection that can be crucial for tasks involving occasional, quick contact with warm objects without continuous exposure to high heat.
Heat Convection Level XIn the context of EU standard EN 407:2020, a test result signifying Heat Convection Level X indicates that the protective glove tested either did not meet the minimum requirements or was not tested under this criterion. It's vital to interpret such a label as the absence of certified protection against convection heat, which may involve exposure to energetically transferred heat via fluids or gases. The test method used to determine the Heat Convection Level involves measuring the time it takes for heat to transfer from a heated aluminum cylinder through the glove material to the inner surface where it might contact skin, as specified in the standard. The testing apparatus measures the rise in temperature inside the glove to assess its heat insulating properties. Practical implications of achieving 'Level X' in convection heat test suggest that the product is either unsuitable for environments where convection heat is a risk, or it necessitates further testing to ascertain its protective capabilities in specific conditions, crucial information for procurement decisions in safety-related industries.
Radiant Heat Level XEN 407:2020 is a European standard that sets the requirements for protective gloves to defend against various thermal hazards, including radiant heat. The designation Radiant Heat Level X indicates that the gloves have not been tested for this specific type of protection, or they did not meet the minimum criteria established by the standard for resisting radiant heat. This means that these gloves are not certified for protection against radiant heat, which involves the transmission of heat through infrared rays from a heat source without direct contact. The lack of a specific radiant heat protection level suggests that users should not rely on these gloves for tasks where significant exposure to radiant heat is expected. Instead, these gloves might be suitable for other types of thermal risks for which they are certified, ensuring users select the appropriate type of protective glove based on the specific hazards present in their working environment. This classification assists in preventing inappropriate glove use and enhancing worker safety by clearly indicating the limitations of the glove's protective capabilities.
CE Marking is a label that shows a product meets certain safety and environmental standards set by the European Union. To get the CE Marking, a company must test and certify their product meets these standards. CE Marking is required for many products sold in the EU, including electronics, machinery, toys and medical devices. It helps ensure that products are safe for consumers and the environment, and allows for easy trade within the EU.
PPE stands for "personal protective equipment." PPE Category 2 refers to equipment that is more complex, and has a higher level of risk. Examples of PPE Category 2 include safety helmets, ear protection, and fall arrest equipment. In Europe, PPE Category 2 must meet certain safety standards set by the European Union, which means that it must be designed and manufactured to protect the user without causing harm. Companies that make or sell PPE must prove that it meets these standards. They also must have a quality management system in place and have to be audited regularly by a notified body.
Cofra Deutschland delivery terms
Free delivery when you order more than 150,00 € from Cofra Deutschland
Supplier shipping fee 5,00 €
Brand minimum 0,00 €
38,09 €
Price per 12 pairs
3,17 € / pair
Other products you may like
Similar products you may like
Recommended for you
Cofra Deutschland
Delivery time: 3 business days
Supplier shipping fee 5,00 €
Free shipping on orders over 150,00 €



Find +150,000 products from hundreds of brands
Autonomous sourcing platform
The most efficient way to source and order supplies for your operations
Sourcing
Ordering
List products you’re looking for and we’ll find the best products and prices for you – all for free.
--- / Customer service